
A mathematical framework for cooperative collision
avoidance of human-driven vehicles at intersections

Alessandro Colombo
DEIB, Politecnico di Milano,

via Ponzio 34/5, 20133 Milano, Italy.
alessandro.colombo@polimi.it

Abstract—Active safety systems for collision avoidance of
road vehicles are a promising solution to the enormous human
and monetary cost of road crashes. In this paper, we describe
some new mathematical approaches for the construction of
collision avoidance algorithms for human-driven vehicles. These
algorithms exploit the sensing and communication capabilities
of the vehicles to share information on the current state of the
system, and based on this information check the safety of the
human decisions and correct them when they would lead to a
collision.

I. INTRODUCTION

According to the latest European Road Safety Observa-
tory annual statistical report [1], road traffic accidents in the
European Union cause about 37000 deaths and more than 1.2
million injuries per year, with an estimated annual cost of e145
billion. Similar figures are reported abroad. Interestingly, about
25% of all road fatalities reported in [1] have taken place at
road junctions, suggesting that crashes at traffic intersections
constitute a very significant portion of the total number of
crashes and fatalities. The ultimate causes of such crashes
are often hard to ascertain, but it is generally estimated that
between 60% and 95% of all crashes are due to human
error. Clearly, even a marginal reduction of the chances of
human mistake can have a dramatic impact on the human and
economic costs of traffic collisions.

Even though much has been done in recent years to reduce
the causes and effects of human error, mostly in terms of road
regulation and vehicle passive safety, the recent appearance of
cheap and powerful computation, communication, and sensing
devices is paving the way towards a more effective solution,
based on technology. The most visible attempts in this di-
rection are probably the vehicles of the DARPA challenges
and the Google car which, by completely removing the driver
from the equation, cut the problem at its roots. However, the
likeliness of having fully autonomous cars replace the current
human-driven ones any time soon is debatable [2], if not for
the technological challenge for the marketing and regulatory
problems that would ensue. A more likely solution will thus
see, at least in the short run, the use of technology as a support
to the human driver, rather than as a replacement [3]–[7].
Unfortunately, as we see next, the presence of a human driver
introduces an extra degree of mathematical complexity in the
collision avoidance problem.

The mathematical structure of an algorithm to check the
correctness of human behaviour (or of any process) according

to given rules was well formalised in [8] in the framework
of discrete event processes. Such an algorithm is called a
supervisor. In our case, the supervisor’s task is to check that
the drivers do not drive the system (the aggregate set of all cars
and other agents involved in the supervisory problem) into a
state of collision, or in a state that cannot but result in a future
collision. Such a problem, involving state reachability, is called
a supervisory problem with safety specification. Note that,
while computing the set of collision states (which is typically
called the bad set) is a relatively simple task ultimately
reducible to checking a set of inequalities, the computation of
the states that are bound to lead to a collision (which is called
the capture set, in analogy to a similar problem in differential
game theory) is a much harder task requiring to evaluate all
the possible trajectories that a given state might follow under
the set of allowed input signals.

An important property of a supervisor that must be imple-
mented in real vehicles is to be minimally restrictive, that is,
to prevent only those choices of manoeuvre that will actually
cause a collision, avoiding false alarms. As we explain next,
the synthesis of an exact minimally restrictive supervisor is a
computationally intractable problem when many vehicles are
involved. With some care it can be solved for small but relevant
scenarios, while an approximate solution can be computed in
realistic conditions.

An other paramount ingredient of our problem is cooper-
ativity, that is, the capacity of vehicles to share information
and to coordinate. Indeed, with suitable initial conditions,
the adversarial game of collision avoidance of two non-
cooperating agents always has a winning strategy for the
collision-seeking one. A simple example is found letting the
two agents have identical dynamics and initial conditions and
moving on intersecting paths: one agent can cause a collision
simply by mirroring the moves of the other. Even though such
a scenario is typically unreasonable, it suggest how an exact
supervisor for a non-cooperative scenario can rapidly become
very restrictive, and some degree of communication and coop-
eration is to be expected from most if not all involved agents
in order to have a provably safe, yet not overly restrictive
architecture.

This paper outlines some results presented in [9], [10], and
extends them to a network with arbitrarily many intersections.
In the following sections, we discuss a mathematical frame-
work to construct supervisors with the properties identified
above. In Section II we formalise a verification problem which
is at the heart of the design of a supervisor, in Section III we
show how the verification problem can be translated into a978-1-4799-5863-4/14/$31.00 c© 2014 IEEE

scheduling equivalent in the case of a single intersection, and
in Section IV we sketch how this result can be extended to an
arbitrarily large road network.

II. PROBLEM FORMULATION

Our objective is to avoid collisions of vehicles moving
along intersecting roads. The primary means of control are the
longitudinal actuators (brakes and engine torque), while the
vehicle’s lateral dynamics essentially acts as a disturbance on
the longitudinal model (and is not considered in the follow-
ing equations). Accordingly, we model agents as Newtonian
point masses moving along pre-specified paths, with possible
intersections between these paths. Each agent’s dynamics is
described by the equation

ẍi = f(ẋi, ui), (1)

where xi ∈ Xi ⊆ R is the position and ui ∈ Ui ⊂ Rm is the
control input. For simplicity we assume that all agents have
the same dynamics, though this constraint can be relaxed for
agents on different paths (see [9], [10]). We will use the sym-
bols xi and ui both for signals (functions of time) and signal
values (vectors in a Euclidean space), the difference should
be clear from the context. When the dependence of xi on the
input, time, or initial conditions needs to be made explicit,
we list the independent quantities as an argument (e.g. xi(ui)
is the trajectory xi with input ui, xi(t, ui, xi(t0), ẋi(t0)) is
the state xi at time t reached with input ui from initial
state (xi(t0), ẋi(t0))). Boldface x and u denote the vectors
(x1, x2, ...), (u1, u2, ...).

We call U the set of input signals u, and we assume
that it contains at least the piecewise smooth functions with
a finite number of discontinuities. We make the following
assumptions:

(A.1) Ui has a unique minimum umin and a unique maxi-
mum umax, and f(ẋi, ui) is non-decreasing in ui.

(A.2) system (1) has unique solutions, depending continu-
ously on initial conditions and parameters.

(A.3) ẋi is bounded to a positive interval [0, ẋmax] with
nonempty interior.

(A.4) |f(ẋi, ui)| is bounded for all ẋi ∈ [0, ẋi,max], ui ∈ Ui,
(A.5)

limt→∞ ẋi(t, umax) = ẋmax
limt→∞ ẋi(t, umin) = 0

(2)

(min and max velocities are attained at least asymp-
totically by applying umin and umax),

As shown in [11], (A.1) implies the following monotonicity
property

(xi(0), ẋi(0)) ≥ (x′i(0), ẋ′i(0)), ui(t) ≥ u′i(t)∀ t ≥ 0
⇓

(xi(t), ẋi(t)) ≥ (x′i(t), ẋ
′
i(t))∀ t ≥ 0.

Let Ik be the k-th intersection in the network, and Ph be
the h-th path (see e.g., Fig. 1). We assume all paths to be
closed and non-circular, that is, they have a beginning and an
end. Let Ph ∈ Ik mean that path Ph crosses intersection Ik,
and i ∈ Ph mean that agent i lays on path Ph. We say that an

Fig. 1. Two intersections (I1 and I2) of four paths (P1 to P4). In the
figure, I2 is downstream I1 along P1. The interval [a1,2, b1,2], representing
the length of the intersection I2 along path P1, is represented as an example.

intersection Ik1 is downstream an intersection Ik2 along a path
Ph if Ik2 follows Ik1 along the traffic flow of path Ph. Given
a set of labelled agents along one or multiple paths, we say
that they are labelled in topological order if, whenever agents
i and j lay on the same path and i drives behind j, then i > j.
In the following we assume that each agent’s path is known
ahead, and that paths can intersect but never merge. This is
of course a rather restrictive assumption, and its relaxation is
currently under study.

For each Ph ∈ Ik we consider an interval [ah,k, bh,k],
which defines the length of the intersection Ik along the path
Ph (see Fig. 1). A side impact occurs if two agents from dif-
ferent paths enter the respective intervals [a, b] simultaneously,
while a rear-end collision occurs if two agents on the same path
have distance less than d, which we assume to be fixed for all
agents. The bad set B is the set of all collision states, given
by the union of the sets

B+ := {x ∈ Rn : ∃(i, j, h1, h2, k); i ∈ Ph1
, j ∈ Ph2

,
Ph1

,Ph2
∈ Ik;xi ∈ (ah1,k, bh1,k); and xj ∈ (ah2,k, bh2,k)}

which accounts for all side impacts, and

B− := {x ∈ Rn : ∃(i, j, k); i ∈ Ph, j ∈ Ph; |xi − xj | < d},

which accounts for all rear-end collisions.

Given the above assumptions, the key step of the supervi-
sory algorithm, that of verifying whether a given configuration
of agents is bound to evolve into a collision, is formally stated
in the following verification problem.

VP Given initial conditions (x, ẋ) determine if there exists an
input signal u that guarantees that x(t,u) /∈ B for all t ≥ 0.

The above is a decision problem, with instances described by
the set (x, ẋ) of initial conditions (and by all parameters of
the system, though for simplicity we assume these fixed once
and for all). Using a common notation from complexity theory,
we write (x, ẋ) ∈ VP to mean that Problem VP accepts the
instance (x, ẋ), that is, it finds a safe input signal. Along the
same line, we use the notation P1 ' P2 to mark that two
decision problems P1 and P2 are equivalent, meaning that
they share the same set of instances, and accept the same
subset of instances (a more formal and general definition of
equivalence is given e.g. in [12], but the one given here suffices
for our purposes).

Problems similar to the one above have been long studied in
the hybrid systems literature, and elegant general purpose solu-
tions have been proposed using a Hamilton-Jacobi formulation
of VP, or a discretization and representation of the system
as a discrete event abstraction [13]–[22]. These approaches
unfortunately are not suitable to handle large road networks
due to the curse of dimensionality. This is not surprising, and
VP was formally shown to be NP-hard in some significant
cases in [9], [23]. However, in the next sections we present
an equivalent formulation of VP which allows to express the
problem in a compact fashion, focussing on the combinatorial
structure and discarding the dynamic complexity. This allows
to solve in real time (i.e. fractions of a second) problems
with up to seven agents, and to devise approximate algorithms
suitable to solve much larger instances.

III. SCHEDULING FORMULATION OF THE VERIFICATION
PROBLEM

To begin with, assume that we have a single intersection,
Ik, n intersecting paths, and a single agent on each path. We
introduce the following scheduling quantities. Assume that a
set (x, ẋ) of initial conditions is given. For sake of clarity, we
do not include them among the arguments of the following
functions. Let tα(ui) := min{t ≥ 0 : xi(t, ui) ≥ α} and
tα(ui) := ∞ if xi(t, ui) < α for all t ≥ 0, that is, tα(ui)
is the earliest time when agent i can pass the point α. Given
i ∈ Ph ∈ Ik, let

Rk,i := tah,k
(ui) with ui = umax,

Dk,i := tah,k
(ui) with ui = umin.

(3)

These are the earliest and latest time when agent i can reach
ah,k. Now, given a vector Tk = (Tk,1, . . . , Tk,n), let Ū(Tk)
be the subset of U of inputs such that

i ∈ Ph ∈ Ik, xi(0) ≤ ah,k ⇒ xi(t, ui) ≤ ah,k ∀ t < Tk,i (4)

for all i. In other words, the set Ū(Tk) contains all the input
signals such that the trajectory xi does not cross ah,k before
Tk,i. Then, define the quantity Pi(Tk) as follows. If Ū(Tk) =
∅, Pi(Tk) :=∞ for all i ∈ {1, . . . , n}, otherwise take

Pi(Tk) := inf
ui∈Ū(Tk)

tbi(ui). (5)

Pi(Tk) is the earliest time when i can reach bh,k, avoiding
rear end collisions, if it does not pass ah,k before Tk,i.

We can now introduce the scheduling problem.

SPk Given initial conditions (x, ẋ), determine if there exists
a schedule Tk ∈ Rn+ such that for all i ∈ {1, . . . , n}

Rk,i ≤ Tk,i ≤ Dk,i, (6)

and for all i ∈ Ph1
, j ∈ Ph2

;Ph1
,Ph2

∈ Ik; if xi(0) < bi,
then

Tk,i ≥ Tk,j ⇒ Tk,i ≥ Pj(Tk). (7)

Theorem 1 VP ' SPk.

Proof: The theorem was proved in [9] for the case of ẋ
is strictly positive. The extension for ẋ ∈ [0, ẋmax] is trivial.

The above theorem states that SPk is equivalent to VP,
meaning that by solving SPk we solve VP exactly, and vice

versa. But whereas VP is formulated over the functional space
U , SPk is defined over the Euclidean space Rn. The search
space can be further reduced using the following result.

Lemma 2 If SPk has a feasible schedule Tk, then it has a
feasible schedule T′k where

T ′k,i ≥ T ′k,j ⇒ T ′k,i = Pj(Tk). (8)

Proof: Condition (7) requires that intervals [Tk,i, Pi(Tk)],
[Tk,j , Pj(Tk)] do not intersect, and Pi(Tk) is nonincreasing
for decreasing Tk,i. Thus, if there is a feasible schedule Tk,
associated to a sequence of nonintersecting segments, a new
feasible schedule can be obtained by shifting the left-end of
all segments to satisfy (8).

Through this lemma we obtain a finite state space, corre-
sponding to the set of all possible orderings of the n agents.
For few agents, the verification problem can be solved by
a simple exhaustive search, while when many agents are
involved approximations with a guaranteed error bound can
be constructed using results from the scheduling literature (see
e.g., [9], [10], [24], [25]). The above results, and in particular
the equivalence in Theorem 1, can be extended to the case
when more than one agent lies on each path, by requiring the
condition

i, j ∈ Ph and xi(0) < xj(0)⇒
xi(t, ui) ≤ xj(t, uj)− d∀ t ≥ 0

to hold along with the condition (4) for all inputs in Ū(Tk).
A full proof of this will appear in a forthcoming paper.

Once the solution of VP is computed, a supervisor can
be implemented simply by measuring the current state of the
system (e.g., using onboard positioning and speed sensors and
sharing the information among all nearby vehicles), projecting
the state of the system forward according to the input currently
requested by all drivers, and checking that the reached state
lies outside of the capture set. This process is formalised in
Algorithm 1, where vk is the vector of inputs requested by all
drivers at time kτ . The input usafe returned by Algorithm 1

Algorithm 1 Implementation of the supervisor map
1: procedure s(x(kτ), ẋ(kτ),vk)
2: ū(t)← vk ∀ t ∈ [kτ, (k + 1)τ]
3: xk+1 ← x((k + 1)τ, ū,x(kτ), ẋ(kτ))
4: ẋk+1 ← ẋ((k + 1)τ, ū,x(kτ), ẋ(kτ))
5: (xk+1, ẋk+1) ∈ VP?
6: if (answer = yes) and x(t, ū) /∈ B for all t ∈ [kτ, (k+1)τ] then
7: return ū
8: else
9: return usafe

when the desired input is deemed unsafe can be computed as
the solution of a linear-complexity optimal control problem,
forcing the agents to respect any schedule that is feasible at
time kτ . One such schedule is guaranteed to exist, and is
known as a by-product of the past iteration of Algorithm 1.
The trajectories in Fig. 2 were obtained simulating a set of 7
vehicles at the intersection of three paths. We used the dynamic
model

ẍi =

 ui − 0.0005ẋ2
i if (ẋi > 0, ui − 0.0005ẋ2

i ≤ 0)
or (ẋi < 0, ui − 0.0005ẋ2

i ≥ 0)
0 otherwise,

0 2 4 6 8 10 12
0

5

x
 (

m
)

t (s)

50

45

40

35

30

25

20

15

10

Fig. 2. Simulation with 7 agents on 3 paths intersecting at a single point
(as in intersection I1 of Fig. 1). Trajectories of the same colour belong to
agents on the same path. The gray rectangle represents the intersection interval
along the paths; coordinates were chosen to have the three intervals coincide
at x ∈ [30, 40]. A side-impact occurs if two trajectories with different colours
lie in the gray rectangle simultaneously, a rear-end collision if two trajectories
of the same colour are too close. The t-axis is black when the supervisor is
applying the drivers’ desired input, red when it is overriding it. In its current
form, for the sake of simplicity, the supervisor overrides the inputs of all
vehicles simultaneously.

where the quadratic term accounts for air drag, with ẋ ∈
[0, 50 km/h] and u ∈ [−8m/s2, 2m/s2]. The drivers were
assigned a given fixed speed that they try to maintain, and
the supervisor acted to correct the driver’s input to avoid side
impacts (two trajectories of different colours simultaneously
in the gray rectangle in Fig. 2) and rear-end collisions (two
trajectories of the same colour at a distance less than d = 5m.

IV. EXTENSIONS TO MANY INTERSECTIONS

The results in the previous section prove that, in a net-
work with a single intersection, VP can be rewritten as the
scheduling problem SPk, which has a finite search space. Its
solution can then be found by an enumerative algorithm or
through other heuristics or approximations, and can be used to
construct a least restrictive supervisor for cooperative collision
avoidance. In the following we prove that this approach can
be extended to a generic network comprising an arbitrary
number of intersections, provided a sparsity condition holds.
This condition ensures that VP for vehicles near different
intersections can be decoupled, and each intersection can be
handled as if it was isolated. To define such a condition, we
begin by computing the minimum worst-case stopping distance
of an agent:

Definition 1 Dstop := limt→∞ xi(t, umin) with xi(0) = 0,
ẋi(0) = ẋmax.

We have the following.

Definition 2 (Sparse traffic condition) Traffic is sparse if,
given any two intersections Ik1 , Ik2 along a path Ph, with Ik2
downstream Ik1 , and given the distance L := ah,k2 − bh,k1 ≥
Dstop between the two intersections, there are no more than
(L − Dstop)/d + 1 agents lying between ah,k1 − Dstop and
ah,k2 .

Now, we design a map that, given a road network and a set
of agents, assigns each agent to one and only one intersection.

Definition 3 (traffic assignment) A traffic assignment is a
map {1, . . . , n} ta→ {Ik1 , Ikm} which maps agents to inter-
sections as follows:

50m

}}

10m

Fig. 3. In the network of Fig. 1, assuming Dstop = 10m and d = 5m, traffic
is sparse provided there are no more than 9 vehicles between a1,1 −Dstop

and a1,2 on path P1

Algorithm 2 traffic assignment
1: for all segments of a path Ph between two subsequent intersec-

tions Ik1 and Ik2 , with Ik2 downstream Ik1 do
2: m← Number of agents between ah,k1 −Dstop and bh,k1

3: assign labels {1, . . . n} to agents between bh,k1 and ah,k2 , in
reverse topological order

4: for i = 1→ n do
5: if limt→∞ xi(t, umin) ≥ Dstop + (m+ i− 1)d then
6: assign {1, . . . , i− 1} to Ik1 and {i . . . , n} to Ik2

7: return
8: If we reach this line, assign {1, . . . , n} to Ik1

9: return

Definition 4 Given a traffic assignment ta→, call
ta→k

(x, ẋ) the
subset of the elements of vector (x, ẋ) relative to agents
assigned to intersection Ik.

With sparse traffic, the traffic assignment in Algorithm 2
partitions agents between intersections so that the verification
problem VP can be solved simply by solving, for all k, the
scheduling problem SPk for the agents assigned to Ik as if it
was isolated. This is formally stated in the following theorem.

Theorem 3 Consider a network with sparse traffic. Then

(x, ẋ) ∈ VP if and only if
ta→k

(x, ẋ)∈ SPk for all k .

Proof: (Sketch) The implication (x, ẋ) ∈VP⇒
ta→k

(x, ẋ)∈
SPk for all k follows from Theorem 1, considering one inter-
section at a time. Now consider any two intersections Ik1 and
Ik2 , with the latter downstream the former along a path Ph.
Let i be the last agent in topological order assigned to Ik2 , and
j be the first agent in topological order assigned to Ik1 , along
the path Ph. To prove the converse implication one can show

that the traffic assignment partitions agents so that, if
ta→k

(x, ẋ)∈
SPk, there exists an input u such that agents assigned to Ik1 do
not collide among themselves, j stops before reaching ah,k2 ,
and for all u′ ∈ U , xi(t, u′i) ≥ xj(t, uj) for all t ≥ 0, that is,
agents j and i do not collide regardless of the input chosen
by i. Since this holds for all intersections downstream Ik, we
can construct an input u ∈ Ū by composing inputs u′ ∈ Ūk

for all k, therefore
ta→k

(x, ẋ)∈ SPk for all k implies (x, ẋ) ∈ VP.

V. CONCLUSION

We have presented an approach to cooperative collision
avoidance for human-driven vehicles. In the framework dis-
cussed above, all vehicles in a road network are assumed to
communicate and share an exact knowledge of their state. The
results presented here improve over the current state of the art,
in particular extending the results in [9], [10], allowing to solve
the verification problem (VP) exactly over a network with an
arbitrary number of intersections, provided that these verify a
sparsity condition. Moreover, some of the assumptions taken
here have been at least partially relaxed, albeit in a simpler
scenario with a single intersection and no rear-end collisions,
in [24] (where the supervisor deals with noisy measurements
and control inputs) and [25] (where uncontrollable vehicles are
considered).

There are, however, a number of important limitations that
still need to be addressed if this approach is to be applied to
a real intelligent transport system. A first and major one is
the geometry of the paths and intersections: even assuming
that the intended path of each car can be determined or
reasonably estimated, the current approach does not consider
merging or splitting paths, nor it can handle the clusters of
nearby intersections that the full set of possible paths on a
road network such as that in Fig. 1 would generate (sparsity
poses a lower bound on the distance between intersections).
Work to extend the above framework to such topologies is
under way. A second important limitation is the fact that,
currently, the supervisor is designed as a centralised entity
and acts simultaneously on all agents. While this might be
reasonable for a small set of vehicles near an intersection
(here the supervisor could be an algorithm running on road-
side infrastructure, or shared among the vehicles), it certainly
isn’t so for a large road network. The computation has to
be distributed and based on local information in order to be
applicable in reality, and the communication constraints and
delays, the limited sensing capabilities, and the unknown and
unpredictable human decision regarding, e.g., the desired path
will all have to be taken into account. This is certainly a
challenging task, but the results we have obtained so far seem
to suggest that it can be completed.

REFERENCES

[1] (2012) European road safety observa-
tory (ERSO) annual statistical report.
http://ec.europa.eu/transport/road safety/pdf/statistics/dacota/dacota-
3.5-asr-2012.pdf.

[2] http://www.technologyreview.com/review/513531/proceed-with-
caution-toward-the-self-driving-car/.

[3] Z. R. Doerzaph, V. L. Neale, J. R. Bowman, D. C. Viita, and M. Maile,
“Cooperative intersection collision avoidance system limited to stop
sign and traffic signal violations (CICAS-V) Subtask 3.2 interim report:
Naturalistic infrastructurebased driving data collection and intersection
collision avoidance algorithm development,” National Highway Traffic
Safety Administration, Tech. Rep., 2008.

[4] P. Alexander, D. Haley, and A. Grant, “Cooperative intelligent transport
systems: 5.9-ghz field trials,” Proc. IEEE, vol. 99, pp. 1213–1235, 2011.

[5] F. Basma, Y. Tachwali, and H. Refai, “Intersection collision avoidance
system using infrastructure communication,” in IEEE Conference on
Intelligent Transportation Systems, 2011.

[6] M. Hafner, D. Cunningham, L. Caminiti, and D. Del Vecchio, “Cooper-
ative collision avoidance at intersections: Algorithms and experiments,”
IEEE Trans. Intell. Transp. Syst, 2013.

[7] Kyoung-Dae Kim, “Collision free autonomous ground traffic: A model
predictive control approach,” in International Conference on Cyber-
Physical Systems, 2013.

[8] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Contr. Opt., vol. 25, pp. 206–230,
1987.

[9] A. Colombo and D. Del Vecchio, “Efficient algorithms for collision
avoidance at intersections,” in Hybrid Systems: Computation and Con-
trol, 2012.

[10] ——, “Least restrictive supervisors for intersection collision avoidance:
A scheduling approach,” IEEE Trans. Autom. Control, (to appear).

[11] D. Angeli and E. D. Sontag, “Monotone control systems,” IEEE Trans.
Autom. Control, vol. 48, pp. 1684–1698, 2003.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, 2009.

[13] C. Tomlin, G. Pappas, and S. Sastry, “Conflict resolution for air traffic
management: A study in multi-agent hybrid systems,” IEEE Trans.
Autom. Control, vol. 43, pp. 509–521, 1998.

[14] C. Tomlin, J. Lygeros, and S. Sastry, “Synthesizing controllers for
nonlinear hybrid systems,” in Hybrid systems: Computation and control,
1998.

[15] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability
specifications for hybrid systems,” Automatica, vol. 35, pp. 349–370,
1999.

[16] R. Ghosh and C. Tomlin, “Maneuver design for multiple aircraft conflict
resolution,” in American Control Conference, 2000.

[17] C. Tomlin, J. Lygeros, and S. Sastry, “A game theoretic approach to
controller design for hybrid systems,” Proc. IEEE, vol. 88, pp. 949–
970, 2000.

[18] C. Tomlin, I. Mitchell, and R. Ghosh, “Safety verification of conflict
resolution maneuvers,” IEEE Trans. Intell. Transp. Syst, vol. 2, pp. 110–
120, 2001.

[19] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi, “Computational
techniques for the verification of hybrid systems,” Proc. IEEE, vol. 91,
pp. 986–1001, 2003.

[20] A. Colombo and D. Del Vecchio, “Enforcing safety of cyberphysical
systems using flatness and abstraction,” in Proceedings of the Work-in-
Progress session of ICCPS, 2011.

[21] E. Dallal, A. Colombo, D. Del Vecchio, and S. Lafortune, “Supervisory
control for collision avoidance in vehicular networks using discrete
event abstractions,” in American Control Conference, 2013.

[22] ——, “Supervisory control for collision avoidance in vehicular networks
with imperfect measurements,” in IEEE Conference on Decision and
Control, 2013.

[23] S. A. Reveliotis and E. Roszkowska, “On the complexity of maximally
permissive deadlock avoidance in multi-vehicle traffic systems,” IEEE
Trans. Autom. Control, vol. 55, pp. 1646–1651, 2010.

[24] L. Bruni, A. Colombo, and D. Del Vecchio, “Robust multi-agent colli-
sion avoidance through scheduling,” in IEEE Conference on Decision
and Control, 2013.

[25] H. Ahn, A. Colombo, and D. Del Vecchio, “Supervisory control
for intersection collision avoidance in the presence of uncontrolled
vehicles,” in American Control Conference, 2014.

